
Statistical inference for mechanistic models of neural populations 

based on spike-train data 

Multi-neuronal spike-train data recorded in vivo typically exhibit rich dynamics as well 

as considerable variability across cells and repetitions of identical experimental 

conditions (trials). The interpretation of such data often relies on abstract statistical 

models that allow for principled parameter estimation and model selection; however, 

the interpretive power of these models is limited by the low extent to which prior 

biophysical constraints are incorporated. In contrast, mechanistic models are useful to 

interpret neurocircuit dynamics, but are rarely quantitatively matched to experimental 

data due to methodological challenges. 

In my talk I will present analytical, likelihood-based tools to efficiently fit spiking 

population models to single-trial spike trains. I will first focus on coupled stochastic 

integrate-and-fire neurons, for which we infer the statistics of hidden inputs, neuronal 

adaptation properties and synaptic connectivity. Then, to infer the low-dimensional 

collective dynamics I will consider a doubly-stochastic model that accounts for fast 

independent and slower shared input fluctuations. We reconstruct the shared 

variations, classify their dynamics, obtain precise spike rate estimates, and quantify 

how individual neurons contribute to the population activity, all from a single trial. 

Extensive evaluations based on simulated data, and validations using ground truth 

recordings in vitro and in vivo demonstrate that our methods efficiently yield accurate 

results and outperform classical approaches. Altogether, these tools enable a 

quantitative, mechanistic interpretation of recorded neuronal population activity. 

 


